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Abstract

The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability)

API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications

(computer programs) for analyzing process models. The input and output conventions allow application users to access

various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate,

for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic

approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity

analysis, data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages

provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas.

Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the

capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example.
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0. Introduction

Building models that represent natural systems
requires assimilating data into the modeling process.
Components of effective assimilation include, for
example, sensitivity analysis, data needs assessment,
parameter estimation, uncertainty evaluation, and
optimization. These issues have been addressed
by researchers in many fields. Recent textbooks
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2http://endo.sandia.gov/DAKOTA/software.html.
3http://typhoon.mines.edu/freeware/ucode/ucode-PREJUPITER/
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include, for example, Parker (1994), Menke (1984),
Saltelli et al. (2000, 2004, 2007), Tarantola (2005),
and Aster et al. (2005) from the geophysics
community; Sun (1994), Ahlfeld and Mulligan
(2000), and Hill and Tiedeman (2007) from the
ground-water community; Burnham and Anderson
(2002) from the biology community; and Cook and
Weisberg (1982, 1999), Seber and Wild (1989),
Dennis and Schnabel (1996), and Draper and Smith
(1998) from the statistics community.

Despite the substantial investment in this field,
many problems remain. The problems are difficult
because natural systems are complex, available data
do not fully characterize the systems, computers are
only now becoming adequate to address many of the
relevant issues, and societal demands are increasing
on many systems of concern. Problem resolution is
confounded because (1) researchers are still develop-
ing and evaluating methods and ideas and (2) new
methods are not readily available to practitioners for
evaluation. For example, parameter estimation may
be accomplished with single- or multi-objective
functions using parsimonious or highly parameter-
ized models (see Hill and Tiedeman, 2007, and
references cited therein), and, when multiple models
of a system are considered, model weighting might be
based on Akaike, Bayesian, Hannan-Quinn, or
Kashyap information criteria (see, for example,
Burnham and Anderson, 2002; Poeter and Anderson,
2005; Meyer et al., 2004; Poeter and Hill, 2007). To
date, testing is insufficient to provide modelers or
resource managers with clear guidance about the
utility of these and other existing approaches, and
new approaches continue to be created. A computer
environment that provides capabilities for rapid
development of applications (computer programs)
with a common input/output structure is needed.
Instead of waiting years or decades for ideas and
theories to be compared in the complex circum-
stances of interest to resource managers, the process
can be expedited using an appropriately designed
programming environment. In this mode, unproduc-
tive ideas and theories are revealed more quickly, and
productive ideas and theories are more quickly used
to address our increasingly difficult societal demands
for modeling of natural systems. The JUPITER API
(Banta et al., 2006)1 provides a programming
environment with the needed characteristics.

Other open-source, public-domain resources
available for application development in these fields
1http://water.usgs.gov/nrp/gwsoftware/jupiter/jupiter_api.html.
include the DAKOTA toolkit2 and the COSU API
(Babendreier, 2004). Commercial resources include
the International Mathematical and Statistical
Library (IMSL), among others. Applications can
be built with any combination of the cited products
and the 11 Fortran modules (which are pro-
grammed using structured programming concepts)
that make up the JUPITER API.

Capabilities provided by the JUPITER API not
otherwise available or available in a substantially
less mature manner include the following:
1.
ind
4

Comprehensive methods for interacting with
complex process models.
2.
 Parallel computing capabilities using a robust
dispatcher-runner protocol.
3.
 An input design that is flexible, largely self-
descriptive, and facilitates reuse of constructed
input in different JUPITER API applications
and site-specific problems.
4.
 Data-exchange files for improved communica-
tion between applications and with other com-
puter programs.
5.
 Methods that allow the application programmer
and (or) user (Fig. 1) to control the level of detail
reported to the main output file(s).
6.
 A useful set of statistical and sensitivity-analysis
techniques, some of which are not currently
available through other resources.
7.
 Sophisticated methods of accounting for data error.

8.
 An equation capability that can be used by the

application programmer to allow the user great
flexibility in defining parameters, observations,
and other quantities.
9.
 An easy procedure for programming new meth-
ods of analysis.

Existing programs, such as early versions of
UCODE (Poeter and Hill, 1998)3 and current
versions of PEST4 (which are both inverse modeling
codes that can be used with any process model) have
many of the missing capabilities provided by the
JUPITER API. However, their structures are not
designed to support development of alternative
ideas by other developers.

The JUPITER API has already been used to
construct a number of applications. Three simple
ex.shtml.

http://www.sspa.com/Pest/index.shtml.

http://water.usgs.gov/nrp/gwsoftware/jupiter/jupiter_api.html
http://endo.sandia.gov/DAKOTA/software.html
http://typhoon.mines.edu/freeware/ucode/ucode-PREJUPITER/index.shtml
http://typhoon.mines.edu/freeware/ucode/ucode-PREJUPITER/index.shtml
http://www.sspa.com/Pest/index.shtml
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JUPITER API

      Application Programmer 

JUPITER API Application

(example: UCODE_2005) 

       Application User

Site investigation

(example: Use UCODE_2005 

with MODFLOW model of a 

ground-water system)

Fig. 1. Role of application programmers and application users.
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applications are presented by Banta et al. (2006) (see
footnote 1). More complicated applications include
the universal inverse code UCODE_2005 (Poeter
et al., 2005)5, 6 other applications distributed with
UCODE_2005 (Residual_Analysis is used to discuss
capability 4 in this article), the multi-model aver-
aging code MMA (Poeter and Anderson, 2005;
Poeter and Hill, 2007)6, and a code named
OPR_PPR (Tonkin et al., 2007)7 for assessing
data importance to process-model predictions
using the local sensitivity Observation-PRediction
(OPR) and Parameter-PRediction (PPR) statistics
(Tiedeman et al., 2003, 2004). The existing applica-
tions can provide a useful starting point for building
new applications.

Source code, documentation, and example input
and output files for the JUPITER API and the
applications listed above can be downloaded from
the URLs listed in footnotes in this article. The
International Ground Water Modeling Center
maintains a web site with links to non-US Geolo-
gical Survey applications.8

The rest of this article provides descriptions and
examples of the 9 capabilities of the JUPITER API
listed above, mostly using examples provided by
UCODE_2005.
5http://typhoon.mines.edu/freeware/ucode/.
6http://typhoon.mines.edu/freeware/mma/.
7http://water.usgs.gov/software/OPR-PPR.html.
8http://www.mines.edu/igwmc/jupiter.
1. Interacting with complex process models

Many model analyses require that a process
model be executed repetitively. Here are two
examples:
(a)
 When conducting local sensitivity analyses,
sensitivities (the derivatives of simulated quan-
tities with respect to parameters) are needed.
To calculate sensitivities by a forward-difference
perturbation method, the application needs
to repeat four tasks: (1) create one or more
process–model input files with parameter
values that change with different repetitions,
(2) execute the process model, (3) extract (read)
the simulated values of interest, and (4) use the
values to calculate sensitivities. The first repeti-
tion uses a base set of parameter values. In
subsequent repetitions one parameter value is
changed slightly from the base values.
(b)
 When conducting Monte Carlo runs, repeated
process-model runs are executed in which the
model is in some way changed. The changes
may be in the parameter values or some other
aspect of the system.
In the JUPITER API, the repeated runs are
accomplished using control loops, each of which
can run the process model one or, if the application
uses the parallel capability, multiple times. A
control loop structure suitable for many applica-
tions and used by UCODE_2005 is diagrammed
in Fig. 2 and is discussed in the following text. In
the text, the phrases in bold identify tasks listed in
Fig. 2. The numbers are consistent with those used
in Fig. 2. Other terms used in Fig. 2 or its caption
are underlined here.
�
 Initialize: Read input, allocate memory, and
perform preparatory steps as needed.

�
 Start control loop (the JUPITER API provides

the programming needed to parallelize repeated
executions of all or part of a control loop as
discussed below for capability 2.)
1) Define job: Define the job of the current

execution of the control loop. Control loops
can repeat or skip tasks, as needed.

2) Generate parameter values: Perform any
needed calculations and populate an array
with one or more sets of parameter values.
For example, the JUPITER API provides
tools for generating parameter values needed

http://typhoon.mines.edu/freeware/ucode/
http://typhoon.mines.edu/freeware/mma/
http://water.usgs.gov/software/OPR-PPR.html
http://www.mines.edu/igwmc/jupiter
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Fig. 2. Flowchart showing how an application such as

UCODE_2005 is constructed using JUPITER API. Other

applications could be similar or have features removed, added,

or reorganized. JUPITER API modules and conventions can be

used to design and construct everything shown except process

model and its output files, and design of process-model input files.

Process model is used to represent system of interest; for example,

MODFLOW, PRMS, and (or) HSPF might be used. ‘‘+’’ after

‘‘Instruction files’’ refers to derivatives interface file, which can be

used to read sensitivities produced by process model.
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to calculate perturbation sensitivities and
UCODE_2005 provides application-specific
programming for this task to generate para-
meter values using modified Gauss–Newton
methods (see the discussion for JUPITER API
capability 9).

3) Adapt parameter values: Convert a set of
parameter values to a form usable by the
process model. The approach depends on
whether the process model is accessed as a
program external to or included within an
application of the API. When the process
model is an external program, as shown in
Fig. 2, this task generally involves creating one
or more of the process-model input files.
JUPITER API modules can use template files
to create process-model input files that are
ASCII format (also called text only; this is a
common format for input files). Template files
are constructed by application users by repla-
cing input values with character strings in
copies of process-model input files. The
approach is quite general and can be used to
manage many process-model input files. As
indicated by the ‘‘Adapt Parameter Values’’
box in Fig. 2, programmers can make this
capability available in an application without
additional programming. When the process
model is implemented as a subroutine, this
task may involve using the parameter values
to populate data arrays used by the model.

4) Execute process model: Invoke the process
model. The application user provides a system
command for executing the process model.
(Depending on the compiler and operating
system used to produce the program execu-
table, minor editing of the JUPITER API
source code may be required to enable a
system command to be invoked. This is
transparent to most users.)

5) Extract model-calculated values: Populate an
array with selected values produced by a
process model. The approach depends on
whether the process model is accessed as a
program external to or included within an
application of the API. When the process
model is an external program, this task
involves reading one or more process-model
output files to obtain the values. JUPITER
API modules can navigate and read values
from files in ASCII format using instruction
files constructed by application users with
conventions established by the JUPITER API.
The approach is quite general and can be used
to read from many process-model output files.
If the process model calculates sensitivities,
these can be read according to specifications
provided by the user in a derivatives interface
file. As indicated by the ‘‘Extract Model-
Calculated Values’’ box in Fig. 2, program-
ming is not required for most applications
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built using the JUPITER API. When the
process model is implemented as a subroutine,
this task generally requires coding to store
values.

6) Use extracted values: This task performs data
manipulation using model-calculated values.
For example, calculation of perturbation
sensitivities from parameter sets and model-
calculated values is done in this task.
�
 End control loop: Loops may end here, or some
or all of the Evaluate task may occur within the
control loop.

�
 Evaluate: This task performs application-depen-

dent analyses.

�
 Cleanup: Delete unneeded files and (or) deal-

locate memory.

In JUPITER API applications, control loops
are application-specific and require programming
by the application developer. The programming
of control loops can be achieved using, for example,
C, Java, or Fortran. Applications that use the
JUPITER API can incorporate all or some of the
tasks and loops mentioned above, or additional
tasks and loops may be defined.
2. Parallel computing capabilities

The JUPITER API includes parallel computing
capabilities using a robust dispatcher-runner proto-
col. The only requirement is network read and write
access between computers. Commonly, the paralle-
lization is applied to executions of the process
model so that many of them are run simultaneously,
but other aspects of a control loop could also be
parallelized. The common case constitutes what is
sometimes called an ‘‘embarrassingly parallel’’
problem, and, for tests using the simple application
provided with the JUPITER API and using
UCODE_2005, networks of computers in typical
workplace settings achieved speedups nearly pro-
portional to the number of processors available. For
example, if 10 simulations could be run in parallel,
using 10 computers, execution times were close to
one-tenth of the time required by serial runs.

JUPITER API capabilities 3–6 described next
relate to data input and output mechanisms. These
mechanisms enable users to easily access a range of
JUPITER API applications and, therefore, to try a
range of analysis techniques on a problem of
interest with a minimum of time and effort spent
learning how to construct input files and control
output files.
3. Input design

The JUPITER API uses input blocks to
achieve an input design that is flexible, largely self-
descriptive, and facilitates reuse of constructed
input in different applications and site-specific
problems. Example input blocks are shown in
Fig. 3. Input blocks have the basic structure:
BEGIN Blocklabel [Blockformat]
Blockbody
END Blocklabel
where items in all capital letters need to be included
literally. Other items are replaced by the user with
options recognized by the application and often
defined by the API. Items in square brackets are
optional. The blocklabels used in Fig. 3 include, for
example, ‘‘UCODE_CONTROL_DATA’’ and
‘‘OBSERVATION_DATA’’. Each input block is
structured according to one of three possible
blockformats: TABLE, KEYWORDS, or FILES,
as shown in Fig. 3. These options allow the
application user to determine the complexity of
each input block, as needed to read the data. Fig. 3
also shows keywords such as ‘‘optimize’’ and
‘‘maxiter’’, which are used to identify the data
within each input block. It is the use of blocklabels
and keywords that make JUPITER API input files
largely self-descriptive. Minimal programming on
the part of the application developer is required to
use input blocks.

The parameter-information input blocks of Fig. 3
display a useful feature of the JUPITER API. The
‘‘PARAMETER_GROUPS’’ input block defines a
set of values that are used as defaults for members
of a group of parameters with ‘‘GroupName ¼
KPar’’. One of those defaults is for ‘‘Adjustable’’,
which controls whether parameter values can be
adjusted, for example, as part of parameter estima-
tion. The members of the group are defined in the
‘‘PARAMETER_DATA’’ input block, where ex-
ceptions to the defaults and additional data are
provided. In Fig. 3, the entries for ‘‘Adjustable’’ in
the ‘‘PARAMETER_DATA’’ input block override
the defaults. The JUPITER API provides similar
capabilities for observations, and groups can readily
be defined for application-specific quantities.
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# ---------- 
# a. OPTIONS 
# ---------- 
BEGIN Options TABLE 
  NROW=1 NCOL=2 COLUMNLABELS 
Verbose Derivatives_Interface 

    0    ..\ufiles\transient.derint 
END Options 

# ---------------- 
# b. UCODE CONTROL 
# ---------------- 
BEGIN UCODE_CONTROL_DATA KEYWORDS 
  ModelName=ex1 
#Performance 
optimize=yes   

#Printing and output files 
  FinalRes=no     #residuals 
  FinalSens=css   #sensitivities  
  DataExchange=yes  
END UCODE_CONTROL_DATA  

# --------------------- 
# c. REGRESSION CONTROL  
# --------------------- 
BEGIN REG_GN_CONTROLS KEYWORDS 
  TolPar=0.01   
maxiter=10        

  maxchange=2.0      
END REG_GN_CONTROLS  

# ----------------------------- 
# d. COMMANDS FOR PROCESS MODEL 
# ----------------------------- 
BEGIN MODEL_COMMAND_LINES FILES 
  ..\ufiles\obs-fwd.command 
  ..\ufiles\obs-fwd-der.command 
END MODEL_COMMAND_LINES 

# ------------------------ 
# e. PARAMETER INFORMATION 
# ------------------------ 
BEGIN PARAMETER_GROUPS KEYWORDS
GroupName=KPars  
Adjustable=yes  TolPar=.001 

  MaxChange=1.2   SenMethod=-1 
END PARAMETER_GROUPS 

BEGIN PARAMETER_DATA TABLE 
  NROW=2 NCOL=3 COLUMNLABELS 

GroupName=KPars1

ParamName StartValue Adjustable
   K1       3e-4        yes 
   RCH1     46.         no 
END PARAMETER_DATA  

# --------------- 
# f. OBSERVATIONS 
# --------------- 
BEGIN OBSERVATION_DATA FILES 
  ..\ufiles\hed.obs 
  ..\ufiles\flo.obs 
END OBSERVATION_DATA  

# ---------------- 
# g. PROCESS MODEL 
# ---------------- 
BEGIN MODEL_INPUT_FILES KEYWORDS
  modinfile=..\..\model\tc1.sen
  templatefile=..\ufiles\tc1.tpl
END MODEL_INPUT_FILES

BEGIN MODEL_OUTPUT_FILES KEYWORDS
  modoutfile=..\..\model\tc1._os
  instructionfile=..\ufiles\inst
  category=obs 
END MODEL OUTPUT FILES 

Fig. 3. This UCODE_2005 main input file is typical of JUPITER API applications. This file refers to other files, which are highlighted

with gray. Keywords in bold are referred to in text. Keyword phrase identified by superscript ‘‘1’’ would need to be positioned at the end of

preceding line in an actual input file.
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To more easily enable a given modeling problem
to be analyzed using multiple JUPITER-based
applications, input files are designed such that the
same input file can be used for multiple applications
with little or no alteration. One feature that supports
this is that when reading an input file, inapplicable
input blocks are ignored. Thus, they need not be
removed from the file when another application is
used. Another feature is that when reading input
blocks, the data associated with inapplicable key-
words are ignored. Thus, capabilities that require
almost the same set of data in an input block can
easily be accommodated by constructing an input
block with the data needed for both capabilities. As
long as the same keyword is not used in two different
ways, the application will simply ignore the keywords
not needed for the analysis being pursued.
4. Data-exchange files

Data-exchange files are used primarily by other
computer programs (e.g. other JUPITER API
applications, or plotting, spreadsheet, and post-
processing software). Data-exchange files are
designed to be as simple as possible. Metadata
related to the contents of data-exchange files
are stored in other application-specific files, such
as the xyzt files of UCODE_2005 (see Poeter et al.,
2005).

Fig. 4 shows a data-exchange file that is produced
by a JUPITER application named Residual_
Analysis (Poeter et al., 2005), which is distributed
with UCODE_2005, and the associated graph
produced using Microsoft Excel. Like many appli-
cations of the JUPITER API, Residual_Analysis



ARTICLE IN PRESS

0.01

0.10

1.00

10.00

100.00

1000.00

h
d
0
1
.s

s

h
d
0
2
.s

s

h
d
0
3
.s

s

h
d
0
4
.s

s

h
d
0
5
.s

s

h
d
0
6
.s

s

h
d
0
7
.s

s

h
d
0
8
.s

s

h
d
0
9
.s

s

h
d
1
0
.s

s

fl
o
w

0
1
.s

s

P
R

IO
R

_
K

C
B

P
R

IO
R

_
K

R
B

 

Name of observation or prior information

C
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's

 D

Critical value =

4/(ND + NPR) = 4/13 = 0.31

"COOK'S D"      "OBSERVATION or PRIOR NAME" "PLOT SYMBOL" 

 0.12718862E-02    hd01.ss                       1 

 0.28266920E-01    hd02.ss                       1 

 0.78468423E-02    hd03.ss                       1 

 0.86027268E-01    hd04.ss                       1 

 0.51269063E-03    hd05.ss                       1 

 0.93029078E-02    hd06.ss                       1 

 0.60938445        hd07.ss                       1 

 0.29953942E-01    hd08.ss                       1 

 0.28627186        hd09.ss                       1 

 0.24699006E-01    hd10.ss                       1 

  703.66283        flow01.ss                     2 

  69.460447        PRIOR_VK_CB                   3 

  36.200297        PRIOR_K_RB                    3 

Fig. 4. UCODE_2005 produces JUPITER API data-exchange files that make it easy to produce graphs for evaluating models and data

needs. This figure shows a graph of Cook’s D, which is described in text. Observations include ten heads and one flow; there are two items

of prior information. Graph shows that flow and prior information are most important to parameter values estimated by regression.

Content of data-exchange file also is shown. Columns of data, column labels, and presence of a plot symbol variable that can be used in

plotting are typical of JUPITER API data-exchange files.
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both reads and produces data-exchange files. It
reads the parameter variance-covariance matrix, the
unscaled sensitivities, weighted residuals, and other
data. It produces data-exchange files containing the
statistics Cook’s D, which measures the influence of
each of the observations and prior information item
on the set of estimated parameter values (see
example in Fig. 4); DFBETAS, which measures
the importance of each observation and prior
information item on each estimated parameter;
and data needed for graphical tests of the weighted
residuals. See Cook and Weisberg (1999) and Hill
and Tiedeman (2007) for additional information
about these statistics and tests.
5. Controlling the level of detail reported to the main

output file(s)

For each application constructed using the
JUPITER API, there are generally one or more
main output files designed to be read by the user to
monitor program performance and evaluate results.
Selected subroutines of the JUPITER API allow
output to such files to be reported at one of five
levels of detail; more detail generally is needed when
the application user is debugging data sets, while
less detail is convenient once a working run is
achieved. The level of detail can be specified by the
application developer, or the developer can allow it
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Table 1

Statistical capabilities provided by JUPITER API

Type of statistic Comments

Critical values For a 5-percent significance level

for Student-t, w2, and F

distributions

Weighting observations and prior information

Independent errors Read weights or their square

roots, or calculate weights from

variances, standard deviations,

or coefficients of variation

Correlated errors Calculate a weight matrix from

an error variance-covariance

matrix. A complete or

compressed matrix can be read.

Internally, weight matrix is

stored and manipulated as a

compressed matrix

Sensitivity analysis Fit-independent statistics:

dimensionless, composite, and

one-percent scaled sensitivities;

leverage statistics; parameter

correlation coefficients. These

and unscaled sensitivities are

printed to data-exchange files

Analyze model fit

Objective-functions values Sum of squared, weighted

residuals and maximum-

likelihood objective functions

Overall evaluation Runs statistic: test for random

distribution in time or space.

Correlation between weighted

residuals and standard normal

statistics to evaluate normality

and independence. Critical

values are provided

Graphical evaluation Produce data sets for spatial and

temporal graphical analysis and

five graphs, including normal

probability graphs

Model discrimination

criteria

Calculated error variance,

standard error of regression,

AICc, BIC, HQ, and KIC,

determinant of Fisher

information matrix

Uncertainty evaluation

Estimated parameters Parameter variance-covariance

matrix, correlation coefficients,

individual 95-percent confidence

intervals

Variance needed for

prediction intervals on

predictions

Allows specification of variance,

standard deviation, or

coefficient of variation.

Programming for prediction

intervals is not included in

JUPITER API
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to be determined by the application user. In the
UCODE_2005 input file shown in Fig. 3, the user
controls the level of output using the ‘‘Verbose’’
keyword in the ‘‘Options’’ input block.

6. Statistical and sensitivity-analysis techniques

The main purpose of the JUPITER API is to
provide a platform for the development of new
ideas, including new statistics. However, the JUPI-
TER API provides a basic set of statistical
capabilities that are available to application devel-
opers, as described briefly in Table 1. The statistical
techniques for weighting observations and prior
information are discussed in the following section.
The fit-independent sensitivity-analysis statistics
listed in Table 1 are not generally available from
other sources; they are described by Hill and
Tiedeman (2007).

7. Methods of accounting for data error

The JUPITER API has three design features that
make it exceptionally useful in regard to accounting
for data error. All are related to the weighting of
observations and prior information, which, based
on theoretical considerations, is how data error
needs to be quantified (Draper and Smith, 1998, pp.
34, 222; Hill and Tiedeman, 2007, Guideline 6).

The first two design features are mentioned in
Table 1 under ‘‘Weighting observations and prior
information’’. First, if the errors are thought to be
independent, the weights for each observation or
piece of prior information theoretically need to be
proportional to 1/si

2, where si
2 is the variance of the

associated error. Yet variances or their inverse are
difficult for most people to understand. More readily
understood statistics are the standard deviation or
coefficient of variation. The JUPITER API pro-
gramming allows the user to define the weight, the
square-root of the weight, the variance, the standard
deviation or the coefficient of variation for each
observation or item of prior information. If needed,
the weight is then calculated internally. This allows
more intuitive quantities to be listed in the input file,
which reduces the chance of data input error.

Second, if the errors are thought to be correlated,
the JUPITER API allows the user to specify a full
error variance-covariance matrix. Examples of how
such a matrix might be determined are discussed by
Hill and Tiedeman (2007, p. 35, 298). The weight
matrix equals the inverse of the error variance-
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covariance matrix. The JUPITER API contains
programming to calculate the inverse and the
square-root of the inverse of the error variance-
covariance matrix, as needed to calculate, for
example, objective functions and weighted residuals,
respectively.

The third design feature is that the JUPITER API
allows matrices to be read as compressed matrices,
uses compressed matrices in the typical matrix
manipulations common to the types of analyses
for which the JUPITER API is designed, and writes
compressed matrices to data-exchange files. This is
needed to reduce the computer storage that would
otherwise be occupied by the typically large, sparse
weight matrices commonly used to embody data
error. For example, with 1000 observations, the
storage required is reduced by a factor of about 500,
from 106 to about 2� 103.

8. Equation capability

The JUPITER API includes an equation cap-
ability that can be used by the application pro-
grammer to allow the user great flexibility in
defining parameters, observations, and other quan-
tities. The equations can include a wide range of
functions, such as arithmetic, exponential, geo-
metric, and logarithmic, and any variable names
allowed by the application programmer. For
example, users of UCODE_2005 can define derived
parameters using parameters defined in the Para-
meter_Data input block or previously defined in the
Derived_Parameter input block. This can be used,
for example, to lump parameters together or to
redefine parameters to obtain quantities more
directly related to prior information.

9. Easy procedure for programming new methods of

analysis

The JUPITER API does not include, for exam-
ple, local regression methods or global search
methods for generating new sets of parameter
values because there are no standard methods that
are likely to be used in a large number of JUPITER
API applications. Indeed, the JUPITER API is
designed to support innovation in just these types of
circumstances. The JUPITER API provides support
for the more standardized or mechanical aspects of
such applications. For example, when constructing
UCODE_2005, two regression algorithms (Quasi–
Newton and Trust Region with step size controlled
by a double-dogleg or hook-step strategy; see
Dennis and Schnabel, 1996) were easily added,
allowing rapid experimentation with these alterna-
tive methods. The steps needed to add each
algorithm were as follows: (a) Program the new
capability, using arrays of sensitivities, observa-
tions, simulated equivalents, weighting, and so on,
produced by programming dominated by JUPITER
API modules. (b) If needed, add control variables to
the input specific to the algorithm. The modular
construction of the API and the application make
step (a) easy. The design of input blocks makes step
(b) easy.

Programmers using the JUPITER API can take
advantage of capabilities developed for earlier
applications. For example, regression routines or
the control-loop programming in UCODE_2005
might be of considerable use in some other
applications.

10. Conclusions

Nine capabilities of the JUPITER API are used
to show how the API can be used to build model-
analysis applications (computer programs), and
how the resulting applications enable users to access
readily a range of analysis capabilities. The goal is
for the JUPITER API to facilitate development of
new ideas for use in the analysis of complex models,
thus allowing the utility of these ideas to be
evaluated more quickly than previously has been
possible.
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